An L-shaped and bending-torsion coupled beam for self-adaptive vibration energy harvesting

Author:

Huang YiORCID,Hu GuobiaoORCID,Zhao Chaoyang,Tang BaopingORCID,Mu XiaojingORCID,Yang YaowenORCID

Abstract

Abstract Vibration energy harvesting is promising for powering wireless sensor networks for mechanical equipment monitoring. Considering the broadband feature of ambient vibrations, a novel L-shaped self-adaptive piezoelectric energy harvester (LSA-PEH) with a slider is proposed. A linearized mathematical model of the LSA-PEH is established to obtain the relationship between its resonant frequency and the slider position. The maximum resonant frequency that can be achieved by the LSA-PEH is predicted based on the linearized model. The corresponding condition is to fix the slider at around 0.08 m, which is a nodal point. Moreover, the theoretical model explains why the slider moves back and forth when the excitation frequency is 40 Hz. Experimental results show that the slider of the proposed LSA-PEH can passively relocate its position to adjust its resonant frequency and maintain resonance. By the same criteria, the bandwidth of the proposed LSA-PEH is increased by 350% compared to a conventional L-shaped beam harvester.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

China Scholarship Council

Science and Technology Projects in Chongqing

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3