Abstract
Abstract
Anapole modes supported by well-designed dielectric nanostructures have attracted extensive attention in the field of nanophotonic applications owing to their unique strong near-field enhancement and non-radiative far-field scattering characteristics, yet it is still difficult to achieve high Q-factor resonance features with a narrow linewidth. In this work, a periodic slotted silicon nanodisk array is theoretically proposed to realize narrow linewidth and high Q-factor resonance in the near-infrared wavelength range. Through introducing the coupling between the anapole modes in the single dielectric nanostructure and the diffractive wave mode arising from the periodic array, the as-designed dielectric nanostructure synchronously manifests excellent spectral features with a bandwidth as narrow as about 2.0 nm, a large Q-factor of 599, an almost-perfect transmission amplitude of 96% and a relatively high electric field intensity (>2809 times) in the middle of the slotted silicon nanodisk. The as-designed nanostructure possessing these outstanding optical features can work as a high-efficiency refractive index sensor, whose sensitivity can reach 161.5 nm RIU−1 with its figure of merit attaining 80.8 RIU−1, efficiently distinguishing an index change of less than 0.01. The proposed slotted silicon nanodisk array exhibits tremendous potential for expanding applications such as label-free biochemical sensing, plasmonic refractive index sensing and surface enhancement spectroscopy.
Funder
the Hunan Provincial Natural Science Foundation of China
National Natural Science Foundation of China
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献