Enhancing the photoluminescence response of thick Ge-on-Si layers using photonic crystals

Author:

Yurasov D VORCID,Yablonskiy A N,Baidakova N A,Shaleev M V,Rodyakina E E,Dyakov S AORCID,Novikov A V

Abstract

Abstract More than an order of magnitude enhancement of the room-temperature photoluminescence (PL) signal from rather thick germanium layers grown on Si(001) was obtained through the utilization of 2D photonic crystals (PhCs). A set of PhCs with different periods and filling factors was fabricated and studied using micro-PL spectroscopy. Optical features of the fabricated PhCs were also theoretically modeled using rigorously coupled wave analysis, which allowed us to bring the observed peaks in the PL response into correlation with the different modes of PhC. In particular, we were able to associate the well-resolved peaks in the PL spectra with the optically active modes of the PhCs. The obtained results proved the possibility of using a homogeneously distributed active medium in PhCs without the formation of specially designed cavities in order to redistribute the internal emitted light into the required modes and efficiently extract it in the far field. The relative simplicity and higher tolerance to fabrication imperfections, as well as the large working area of these kinds of PhCs compared to PhCs with microcavities, can be advantageous for creating a PhC-based Si-compatible light source for the telecom band.

Funder

Russian Science Foundation

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3