Morphology-dependent catalytic activity of tungsten trioxide (WO3) nanostructures for hydrogenation of furfural to furfuryl alcohol

Author:

Ali Wesam A,Bharath GORCID,Morajkar Pranay P,Salkar Akshay V,Haija Mohammad Abu,Banat Fawzi

Abstract

Abstract The development of effective and low-cost catalysts for the hydrogenation and stabilization of bio-oils is still a challenge that needs to be overcome. Several nanostructured WO3 catalysts were synthesized in this study to investigate the effect of their morphology on their catalytic activity and selectivity for the hydrogenation of biomass-derived compounds such as furfural (FF). The morphology of the catalysts was tuned via a surfactant-assisted hydrothermal process. Nanorod and nanoprism WO3 catalysts were produced using dodecyl dimethylammonium bromide (DAB) and poly (ethylene-alt-maleic anhydride), respectively, while WO3 nanocubes were produced without the use of surfactants. Various analytical techniques were used to characterize the morphology of the synthesized WO3 catalyst. Furthermore, the hydrogenation of FF was used as a probe reaction to evaluate the catalytic performance of the WO3 nanostructures. Notably, DAB-assisted WO3 nanorods (D-WO3) exhibited a relatively high furfuryl alcohol (FFA) selectivity of 85% with an FF conversion of 52% at 100 °C, under 10 bar of H2 pressure over a reaction time of 120 min. A plausible route for the hydrogenation of FF into FFA and other products over D-WO3 nanocatalyst was illustrated. The D-OW3 nanocatalyst’s promising results indicate that it could be a viable, low-cost, and efficient alternative catalyst for hydrogenating FF into FFA.

Funder

Khalifa University of Science, Technology and Research

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3