Part I. Nanobubbles in pulsed laser fields for anticancer therapy: in search of adequate models and simulation approaches

Author:

Kostyukov A S,Isaev I LORCID,Ershov A E,Gerasimov V SORCID,Polyutov S PORCID,Karpov S VORCID

Abstract

Abstract We numerically investigate the conditions for the laser-induced formation of nanobubbles in aqueous medium around plasmonic nanoparticles (NPs) bound to the malignant cell membranes that is considered as the method of their irreversible damage. We proposed employing the versatile and accessible simulation software as a research tool based on the finite volume method underlying the ANSYS Fluent package and supplemented with our user-defined functions that adapt it to solution of the stated problems. This adaptation allows to verify the model using experimental data for the same conditions. We determined the conditions for the pressure growth on the cell membrane at the initial moment of bubble formation significantly exceeding the threshold of irreversible damage. The model can be used for investigation of hydrodynamic effects accompanying irradiation of plasmonic NPs using both different types of pulsed lasers and ideally absorbing NPs with resonance in the hemoglobin spectral transparency range, as well as to uncover previously unknown effects. They include the conditions for localization of a damaging factor non-affecting the normal cells, the conditions for generation of ultrahigh pressure pulse that enables to damage the cell membrane and precedes formation of thin vapor shell around NPs, which, unlike large bubbles, requires registration using highly sensitive experimental measurements. An extensive overview of key publications summarizing the state-of-art in this area is presented.

Funder

RFBR

Ministry of Science

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3