Manipulating plasma turbulence in cross-field plasma sources using unsteady electrostatic forcing

Author:

Rose Benedict IORCID,Knoll AaronORCID

Abstract

Abstract Unsteady electrostatic forcing is investigated as a method for manipulating turbulent plasma behaviour within Hall-effect thrusters and similar cross-field plasma devices using a simplified one-dimensional three-velocity azimuthal electrostatic particle-in-cell simulation. A wide range of axial electric field forcing frequencies from 1 MHz up to 10 GHz at amplitudes of 10 V cm−1, 50 V cm−1 and 100 V cm−1 are applied to the plasma and the response is evaluated against a baseline case defined by the community benchmark LANDMARK Test Case 1. ‘Tailoring’ of plasma parameters, such as the electron cross-field mobility, is demonstrated via manipulation of the electron drift instability using unsteady forcing. Excitation of the unstable electron cyclotron modes by the electron drift instability is shown to be able to produce a reduction of the resultant electron cross-field mobility of the plasma by up to 50% compared to the baseline value. Additionally, forcing at the electron cyclotron frequency appears to be capable of increasing cross-field mobility by up to 2000%. Implications of the results for direct drive electric propulsion systems and improved current utilization efficiencies for Hall-effect thrusters are discussed.

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference44 articles.

1. The technological and commercial expansion of electric propulsion

2. The 2022 Plasma Roadmap: low temperature plasma science and technology

3. Development and characterization of high-efficiency, high-specific impulse xenon hall thrusters;Hofer,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3