Unfolding the conductivity reversal n- to p-type in phosphorus-doped ZnO thin films by spin-on dopant (SOD) process

Author:

Mishra Madhuri,Saha Rajib,Bhowmick Sangita,Pandey Sushil Kumar,Chakrabarti SubhanandaORCID

Abstract

Abstract Phosphorus doping induced p-type doping in ZnO thin films based on spin-on dopant (SOD) process is reported in this article. Owing to the reduced dependence on the conventional amenities for diffusion/ion-implantation doping, the SOD process provides a simple and cheap doping method. The effect of SOD process temperature on conductivity ZnO thin films is investigated by altering the temperature from 700°C to 1000°C. Systematic field emission scanning electron microscopy analysis demonstrates the impact of doping temperature on the morphological properties of SOD. The x-ray diffraction measurements reveal that the p-type ZnO thin films had (002) preferred crystal orientation. At the same time, x-ray photoelectron spectroscopy validated the formation of the PZn–2VZn complex, which was responsible for the acceptor behaviour of films. Moreover, the photoluminescence spectra tracked down that the origin of 3.35 and 3.31 eV emission peaks is due to the acceptor bound exciton and free-electron to acceptor level transitions, respectively. Finally, an elevated hole concentration of 2.09 × 1016 cm−3 is achieved with a resistivity of 1.14 Ω-cm at 800°C doping temperature. However, the film doped at 900°C and 1000°C showed n-type behaviour due to the generation of high concentration donor defects. Here, we successfully demonstrate that the SOD process has great potential to produce high-quality p-type ZnO thin films suitable for optoelectronic devices applications.

Funder

Department of Science and Technology (DST), India

Department of Information Technology, Government of India

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3