Abstract
Abstract
We theoretically investigate spin- and valley-polarized transport within a normal/antiferromagnetic/normal (N/AF/N) junction based on transition metal dichalcogenides (TMDs), under the influence of off-resonance circularly polarized light and gate voltage. Antiferromagnetism modulates spin states and the effective gap, reducing the spin gap for one state while increasing it for the opposite, resulting in a broad spin polarization and a controlled gap. Off-resonance circularly polarized light adjusts the valley degree of freedom and the effective gap, providing a wide range of valley polarization. Harnessing the strong spin–orbit coupling in TMDs enables perfect spin-valley polarization in the proposed junction across a wide range of Fermi energies through AF and/or off-resonance light manipulation. AF manipulation effectively narrows the band gap of TMDs at lower light energies, enhancing potential applications of the proposed junction for spin-valley filtering.