Structure-selected graphene/metallic surface plasmon coupling regime and infrared modulation application

Author:

Zhang YeORCID,Lai Jianjun,Chen ChanghongORCID

Abstract

Abstract Here we present a graphene-based long-wavelength infrared modulator characteristic of extra-high contrast, where the frequency detuning degree of magnetic and electric surface plasmons (SPs) is controllable by the gated graphene Fermi energy. If the device is designed to work in a strong SP-coupling regime by selecting an appropriate low-lossy gate dielectric thickness, a modulation depth (MD) up to ∼100% but insertion loss (IL) as low as ∼−0.37 dB is achievable. Moreover, a compromised MD > 90% with IL < −1.0 dB is still retainable in two broadband ranges. The disclosed underlying mechanism to the device working state in the strong, electromagnetic-induced transparency (EIT), or weak SP-coupling regime, indicates the coupling regime shows a strong dependence on the dielectric thickness, which is related to the magnetic-SP mode volume, while the working wavelength can be selected in a broader spectral range by scaling the device geometry. These findings are helpful to construct those optoelectronics for infrared absorption enhancement, EIT, and strong coupling spectral characteristic itself.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3