Effect of the anode material on the evolution of the vacuum breakdown process

Author:

Zhou ZhipengORCID,Kyritsakis AndreasORCID,Wang ZhenxingORCID,Li YiORCID,Geng Yingsan,Djurabekova FlyuraORCID

Abstract

Abstract Vacuum breakdown, also known as vacuum discharge, is a common phenomenon in nature and is gaining an increasingly important role in modern technologies. In spite of a remarkable advance in our understanding of the nature of the breakdown, the role of the anode, i.e. the positively charged electrode, in the development of the breakdown is still completely unclear. In this paper, we employ a streak camera with picosecond time resolution to observe precisely the evolution of anodic glow from different anode materials. The results show that the choice of the anode material does not affect either the delay time between the cathodic and anodic flares or the formation of the conductive channel. Furthermore, we show that the heating of the anode surface by runaway electron currents is not sufficient to evaporate enough atoms for the anodic glow. On the other hand, we show that the neutrals for the anodic flare can be produced by the ions from the expanding cathode plasma by sputtering. Finally, the coincidence in time of the voltage collapse and the anode glow is consistent with the fast expansion of the cathode plasma, which causes both the voltage collapse and the anode glow when it reaches the anode, and densifies by sputtering and reflection. However, the two events are not in direct dependence of one another, since the order of their appearance is random, implying that a fully conductive channel can be established without any light emission from the anode.

Funder

CERN K-contract

Natural Science Basic Research Plan in Shaanxi Province of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3