High-performance solid-state photon-enhanced thermionic emission solar energy converters with graded bandgap window-layer

Author:

Yang YangORCID,Xu Peng,Cao Weiwei,Zhu Bingli,Wang Bo,Bai Yonglin,Qin Junjun,Bai Xiaohong,Chen Zhen

Abstract

Abstract To realize a high-performance solid-state photon-enhanced thermionic emission (SPETE) solar energy converter, in this study, a graded bandgap window layer is therefore adopted, throughout which the bandgap gradation is generated via the variation of Al composition in the A l x G a 1 x As layer in the SPETE converter with a GaAs absorber. Based on one-dimension steady-state equation, an analytical model is formed in analyzing performance of the proposed device in our study. Theoretical simulation results indicate that not only are the losses of contact surface recombination being decreased via the bandgap-gradation-induced build-in electric field of the window layer, but also the photon-generated electrons are effectively collected, thereby improving the conversion efficiency. Moreover, the effect of bandgap energy of the contact surface and the width of the window layer on device performance is discussed. A trade-off of high-efficient SPETE converters is therefore realized between large contact surface bandgap and thin window layer width, to which the rationale lies in the improved process of electron collection facilitated by the enhanced build-in electric field rather than reducing the photon absorption in the window layer. Threshold values for barrier height at the emitting interface are presented to guarantee the ideal voltage-current characteristic. It is found that the threshold values of barrier increase with the increase in temperatures.

Funder

the Equipment Pre-research Field Fund

West Light Foundation of Chinese Academy of Sciences

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3