XAD-2 resin modified by nanosecond pulsed discharge to improve the adsorption capacity of polycyclic aromatic hydrocarbons

Author:

Wang Hongli,Yang DezhengORCID,Xu Qingnan,Yuan Hao,Zhou Xiongfeng,Wang WenchunORCID

Abstract

Abstract In this study, nanosecond pulsed discharge plasma is employed to treat the XAD-2 resins in the purpose of improving its adsorption capacity of polycyclic aromatic hydrocarbons. The discharge images, waveforms of pulse voltage and discharge current, and optical emission spectra are measured to investigate the plasma characteristics. The scanning electron microscopy, N2 adsorption-desorption analysis, Fourier transform infrared spectrum, and x-ray photoelectron spectroscopy are employed to characterize the physical and chemical properties of raw and modified XAD-2 resins. It is found that the adsorption capacity of modified XAD-2 resins for polycyclic aromatic hydrocarbons is obviously improved. The adsorption capacity of XAD-2 resins modified by plasma increased by 70% in 10 min adsorption time under the optimal conditions of 20 min treatment time and artificial air. The reason for the improved adsorption capacity is attributed to the increase of specific surface area, the number of 28–33 nm micro-mesopores, and relative intensity of oxygen-containing functional groups (C=O, C–O, and COOH). The possible mechanism of plasma modification of XAD-2 resin is also proposed.

Funder

Science and Technology Development Fund of Xinjiang Production and Construction

Science and Technology on High Power Microwave Laboratory Fund

National Natural Science Foundation of China

National Key R&D Program of China

Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3