Field-enhanced polarization in polytype ferric oxides: confronting anisotropy in dielectric ellipsoid dispersion

Author:

Bhattacharjee SouvikORCID,Banerjee Anibrata,Chattopadhyay Kalyan KumarORCID

Abstract

Abstract An analytic dielectric introspection in two cardinal ferric oxide polymorphs, viz. hematite and maghemite, is conducted using a three-fold line of direction. Firstly, dc field-dependent radio/audio-frequency impedance and dielectric spectra of polycrystalline MIM pellets, comprising near-stoichiometric (meticulously characterized) α , γ Fe2O3 nanoparticles, are analysed by employing the Cole–Davidson model, Jonscher’s power law and equivalent circuitry to quantify non-Debye dipolar relaxations, small polaron hopping conduction, grain core–boundary resistivity correlations and field-driven delocalization/de-trapping of carriers. Bias-tuned low-frequency enhancement of the dielectric constant by augmenting Maxwell–Wagner polarization is demonstrated for both samples, a prerequisite for conquering classical energy-storage bottleneck. Secondly, the optical dielectric function and associated parameters are evaluated under a density functional theory + U framework, to physically designate particular resonant absorption, dissipation, electronic polarization and decay. In doing so, a new crystallographically consistent and energetically stable vacancy-ordered maghemite-type supercell is constructed to accomplish reasonable computational cost. Thirdly, intrinsic anisotropy in materials sensitive to photonic excitations is videographed by simulating energy-dispersive evolution of the quadric surface to project real/imaginary dielectric tensors. The authors anticipate that this intensive technique will pictorially demonstrate anisotropic deviations in the dielectric ellipsoid, fostering materials physics over linear and nonlinear dielectrics.

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3