Symmetry breaking in 2D materials for optimizing second-harmonic generation

Author:

Tuan Hung NguyenORCID,Nguyen ThanhORCID,Van Thanh VuongORCID,Wang SakeORCID,Saito Riichiro,Li MingdaORCID

Abstract

Abstract Second-harmonic generation (SHG) is the generation of 2ω (or half wavelength) light from incident light with frequency ω as a nonlinear optical response of the material. Three-dimensional (3D) SHG materials are widely investigated for developing laser technology to obtain shorter wavelengths in photolithography fabrication of semiconductor devices and the medical sciences, such as for imaging techniques that do not use fluorescent materials. However, to obtain the optimized SHG intensity, the 3D material is required to have no spatial-inversion symmetry (or non-centrosymmetry) and special crystal structure (or so-called phase-matched condition). Recently, engineering symmetry breaking of thin two-dimensional (2D) materials whose 3D structure has the inversion symmetry can offer a breakthrough to enhance the SHG intensity without requiring the phase-matched condition. Over the past decade, many 2D SHG materials have been synthesized to have broken inversion symmetry by stacking heterostructures, twisted moiré structures, dislocated nanoplates, spiral nanosheets, antiferromagnetic order, and strain. In this review, we focus on the recent progress in breaking inversion and rotational symmetries in out-of-plane and/or in-plane directions. The theoretical calculations and experimental setup are briefly introduced for the non-linear optical response of the 2D materials. We also present our perspectives on how these can optimize the SHG of the 2D materials.

Funder

China Scholarship Council

Natural Science Foundation of Jiangsu Province

Qinglan Project of Jiangsu Province of China

JSPS KAKENHI

Frontier Research Institute for Interdisciplinary Sciences, Tohoku University

MIT School of Engineering

Yushan Fellow Program by the Ministry of Education (MOE), Taiwan

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3