Consideration of the effect of nanoscale porosity on mass transport phenomena in PECVD coatings

Author:

Franke JORCID,Zysk FORCID,Wilski SORCID,Liedke M OORCID,Butterling MORCID,Attallah A GORCID,Wagner AORCID,Kühne T DORCID,Dahlmann RORCID

Abstract

Abstract Here we show a novel approach to characterize the gas transfer behavior of silicon-oxide (SiO x ) coatings and explain the underlying dynamics. For this, we investigate the coating on a nm-scale both by measurement and simulation. Positron annihilation spectroscopy (PAS) and quantum mechanical electronic structure-based molecular dynamics simulations are combined to characterize the porous landscape of SiO x coatings. This approach analyses the influence of micropores smaller than 2 nm in diameter on gas permeation which are difficult to study with conventional methods. We lay out the main pore diameter ranges and their associated porosity estimates. An influence of layer growth on pore size and porosity was found, with an increased energy input during layer deposition leading to smaller pore sizes and a reduced porosity. The molecular dynamics simulations quantify the self-diffusion of oxygen and water vapor through those PAS deducted micropore ranges for hydrophilic and hydrophobic systems. The theoretical pore size ranges are fitting to our PAS results and complete them by giving diffusion coefficients. This approach enables detailed analysis of pore morphology on mass transport through thin film coatings and characterization of their barrier or membrane performance. This is a crucial prerequisite for the development of an exhaustive model of pore dominated mass transports in PECVD coatings.

Funder

Helmholtz Association

Paderborn Center for Parallel Computing

Helmholtz Energy Materials Characterization Platform

Deutsche Forschungsgemeinschaft

Jülich Supercomputing Centre, Forschungszentrum Jülich

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3