Directional manipulation of diffusio-osmosis flow by design of solute-wall and solvent-wall interactions

Author:

Wang Xin,Jing DengweiORCID

Abstract

Abstract Understanding of diffusio-osmosis, the flow induced by a solute gradient acting in narrow interfacial layers at a nanoscale solid-liquid interface, is of great value in view of the increasing importance of micro- and nano-fluidic devices and self-propelling particles. Using molecular dynamics simulations, we employ an appropriate strategy for direct simulation of diffusio-osmosis flows, mimicking a realistic experiment without any assumed external forces. It allows us to obtain reliable flow details, which are hard to obtain in experiments. We found that the solvent-wall interaction, previously overlooked in the classical paradigm, plays a critical role in the diffusio-osmosis process. In particular, diffusio-osmosis is controlled by the interaction difference between the solute-wall and solvent-wall. When the solute-wall interaction is stronger (weaker) than the solvent-wall, a surface excess (depletion) of solute particles on the solid-liquid interface is formed, which induces diffusio-osmosis flow towards a low (high) concentration. We modified the classical Derjaguin expression to include the effect of nanoscale hydrodynamics boundary conditions for the accurate prediction of diffusio-osmosis characteristics. Overall, our results provide clear guidance for controlling fluid flow and manipulating the motion of colloids under tunable solute concentrations.

Funder

Royal Society

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3