N2O5 in air discharge plasma: energy-efficient production, maintenance factors and sterilization effects

Author:

Wang ZifengORCID,Zhu MengyingORCID,Liu DingxinORCID,Liu Linbo,Wang Xiangyu,Chen Jinkun,Guo LiORCID,Liu Yunen,Hou Mingxiao,Rong Mingzhe

Abstract

Abstract N2O5, a reactive species produced by air discharge plasma, has recently attracted much attention. Due to its high reactivity and solubility, N2O5 is a key molecule in nitrogen fixation processes and exhibits promising prospects in plasma biomedicine. However, thus far, it is not well known how to produce N2O5 efficiently and then maintain its concentration under the action of fast removal reactions. In view of this, N2O5 production by dielectric barrier discharge (DBD) alone and by the combination of DBD and gliding arc discharge is compared in this paper. It is found that the combination method can yield over three times the concentration of N2O5 compared to the single DBD method with the optimum discharge power. Moreover, the concentration of N2O5 in the effluent gas can be maintained once O3 also exists because O3 can continually produce N2O5 to compensate for its reduction. Finally, the sterilization effects of both the plasma effluent gas and plasma-activated water have trends similar to the trend of the gaseous N2O5 concentration, implying that N2O5 plays an important role in sterilization. This paper enhances the understanding of N2O5 chemistry in air discharge plasma and provides an effective way to produce and maintain N2O5 for subsequent applications.

Funder

Fundamental Research Funds for the Central Universities

State Key Laboratory of Electrical Insulation and Power Equipment

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3