Target heating and plasma dynamics during hot magnetron sputtering of Nb

Author:

Leonova KORCID,Britun NORCID,Konstantinidis SORCID

Abstract

Abstract In this work, the direct current (DC) hot magnetron sputtering (HMS) of Nb has been studied and compared with the conventional cold magnetron sputtering (CMS) discharge. Particularly, these two magnetron systems were investigated in terms of current–voltage trends, behaviour of spectral lines, target temperature, and deposition rate. The current–voltage evolution showing strong variations over time in the HMS system was used to monitor the moment when thermionic emission becomes considerable. Meanwhile, thanks to the time-resolved optical emission spectroscopy (OES), the dynamics of plasma particles and the population of their electronic levels were analysed as a function of the target temperature. The target temperature was measured owing to both pyrometry and OES-based approach, i.e. by fitting an emission spectrum baseline. Finally, in the HMS configuration used in this work, the deposition rate up to 100 nm min−1 was obtained at the applied power density of 30 W cm−2, which is three times higher than the maximum power density applicable to the classical CMS system. However, with further increase in the power density, the deposition rate values were found to be saturated, which is likely caused by a significant increment in a number of thermal electrons in the discharge area.

Funder

Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture

Collective Research Networking

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Glows, arcs, ohmic discharges: An electrode-centered review on discharge modes and the transitions between them;Applied Physics Reviews;2024-07-19

2. Spectral pyrometry of non-metallic materials at plasma heating, melting and cooling (Tomsk);Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture;2023-10-25

3. Ion formation in thermionic-emission-assisted hot magnetron sputtering discharge;Plasma Sources Science and Technology;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3