Effect of helium on thermal transport properties in single- and bi-crystals of Ni: a study based on molecular dynamics

Author:

Sharma Saurabh S,Parashar AvinashORCID

Abstract

Abstract Nuclear structures are prone to irradiation-induced defects that make them susceptible to alternation in mechanical and thermal properties. The transmutation of Ni to insoluble He atoms is considered to be responsible for the embrittlement of Ni. Helium bubbles are deemed responsible for the deterioration of mechanical and thermal properties of the Ni crystal, and this should be studied in detail to predict the lifespan of ageing nuclear structures. The aim of this article is to study the effect of helium on the thermal transport phenomenon in single- and bi-crystals of Ni. Molecular dynamics-based simulations in conjunction with a hybrid force field are performed to study the effect of a helium bubble on the thermal transport phenomenon in Ni crystals. These simulations are further extended to study the impact of symmetrical tilt grain boundaries (STGB) in conjunction with the doping of helium atoms on the thermal transport phenomenon in bi-crystal Ni. The effect of helium concentration in the bubble significantly alters the thermal transport in single-crystal Ni. The STGB configuration also introduces interfacial thermal resistance as a function of the misorientation angle. The helium-doped grain boundaries further increase the resistance to phonon movement and increase Kapitza resistance. The increase in Kapitza resistance is more dominant in higher misorientation angle grain boundaries.

Funder

MATRICS

Science and Engineering Research Board

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3