Mechanistic study of catalytic CO2 hydrogenation in a plasma by operando DRIFT spectroscopy

Author:

Parastaev AORCID,Kosinov NORCID,Hensen E J MORCID

Abstract

Abstract Plasma-enhanced heterogeneous catalysis offers a promising alternative to thermal catalysis for many industrially relevant processes. There is only limited mechanistic understanding about the relation between the interactions of highly energetic electrons and excited molecules with heterogeneous catalysts in a plasma and their catalytic performance. Herein, a novel operando infrared spectroscopy cell is presented allowing the investigation of surface intermediates upon exposure of a catalyst to plasma. The polyether ether ketone cell enclosure embedding a quartz reactor is operated at atmospheric pressure and can be heated to 250 °C. A case study involved the characterization of surface intermediates during CO2 hydrogenation on a Co/CeZrO4 catalyst. The temperature was monitored using online UV–Vis spectroscopy. This combined approach offers new experimental insights into plasma-catalyst synergy. The most important one is the demonstration of CO2 methanation at the catalyst surface at room temperature in a plasma.

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3