Cold plasma treatment of catalytic materials: a review

Author:

Di LanboORCID,Zhang JingsenORCID,Zhang Xiuling,Wang Hongyang,Li Hong,Li Yanqin,Bu Decai

Abstract

Abstract Catalytic materials play important roles in chemical, energy, and environmental fields. The exhaustion of fossil fuels and the resulting deteriorative environment have become worldwide problems to be solved urgently. Therefore, treatment of catalytic materials by a green process is required for a sustainable future, and the atom efficiency of the catalytic materials should be improved at the same time. Cold plasma is rich in high-energy electrons and active species, and the gas temperature can be close to room temperature. It has been proved to be a fast, facile, and environmentally friendly novel method for treating catalytic materials, and has aroused increasing research interests. First, plasma treatment can achieve the reduction, deposition, combination, and decomposition of active components during the preparation of catalytic materials. The fast, low-temperature plasma process with a strong electric field in it leads to different types of nucleation and crystal growth compared to conventional thermal methods. Correspondingly, the synthesized catalytic materials generally possess smaller particle sizes and controlled structure depending on the plasma processing parameters and the materials to be treated, which can enhance their activity and stability. Second, plasma treatment can achieve the modification, doping, etching, and exfoliation of the catalytic materials, which can tune the surface properties and electronic structures of the catalytic materials to expose more active sites. Third, plasma treatment can regenerate deactivated catalytic materials by removing the carbon deposits or other poisons, and reconstruction of the destroyed structure. This work reviews the current status of research on cold plasma treatment of catalytic materials. The focus is on physical and chemical processes during plasma processing, the processing mechanism of the catalytic materials, as well as the future challenges in this filed.

Funder

Natural Science Foundation of Liaoning Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3