Abstract
Abstract
Magnetic vortex cores in polycrystalline Ni discs underwent non-volatile displacements due to voltage-driven ferroelectric domain switching in single-crystal BaTiO3. This behaviour was observed using photoemission electron microscopy to image both the ferromagnetism and ferroelectricity, while varying in-plane sample orientation. The resulting vector maps of disc magnetization match well with micromagnetic simulations, which show that the vortex core is translated by the transit of a ferroelectric domain wall, and thus the inhomogeneous strain with which it is associated. The non-volatility is attributed to pinning inside the discs. Voltage-driven displacement of magnetic vortex cores is novel, and opens the way for studying voltage-driven vortex dynamics.
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献