Tunable terahertz Dirac semimetal metamaterials

Author:

He XiaoyongORCID,Liu Feng,Lin Fangting,Shi Wangzhou

Abstract

Abstract The tunable propagation properties of 3D Dirac semimetal (DSM) patterned metamaterial (MM) structures have been symmetrically investigated in the terahertz (THz) regime. The results demonstrate that the resonant properties are very sensitive to the thicknesses of DSM MMs, and hundreds of nanometers are required to excite strong resonant curves. The DSM MMs support both strong LC and dipolar resonances, quite different from graphene MM patterns which mainly depend on dipolar resonance. As the Fermi level increases, the resonant strength becomes stronger, and significant modulation can be achieved, e.g. the amplitude and frequency modulation depths of transmission curves are more than 99% and 80%, respectively. In addition, by utilizing asymmetrical resonators, a very sharp Fano resonant peak is achieved with a large Q-factor of more than 25, for which the figure of merit is about 20. The results are very helpful to understand the tunable mechanisms of DSM devices and design novel THz plasmonic components, such as modulators, filters, and sensors.

Funder

National Natural Science Foundation of China

Funding of Shanghai Pujiang Program

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3