Abstract
Abstract
In this paper, a large-scale compatible plasmonic nanocavity design platform is utilized to achieve a nearly order of magnitude photoluminescence (PL) enhancement. The proposed design is made of multi-sized/multi-spacing gold (Au) nanounits that are uniformly wrapped with a thin aluminum oxide (Al2O3) layer, as a foreign host to form a metal–insulator–semiconductor cavity, as they are coated with semiconductor quantum dots (QDs). Our numerical and experimental data demonstrate that, in an optimal insulator layer thickness, the simultaneous formation of broadband Fabry–Perot resonances and plasmonic hot spots leads to enhanced light absorption within the QD unit. This improvement in absorption response leads to the PL enhancement of QDs. This work demonstrates the potential and effectiveness of a random plasmonic nanocavities host in the realization of lithography-free efficient emitters.
Funder
Turkish Academy of Sciences
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献