Abstract
Abstract
The detection of cell death and identification of its mechanism underpins many of the biological and medical sciences. A scattering microscopy based method is presented here for quantifying cell motility and identifying cell death in breast cancer cells using a label-free approach. We identify apoptotic and necrotic pathways by analyzing the temporal changes in morphological features of the cells. Moreover, a neural network was trained to identify the cellular morphological changes and classify cell death mechanisms automatically, with an accuracy of over 95%. A pre-trained network was tested on images of cancer cells treated with a different chemotherapeutic drug, which was not used for training, and it correctly identified cell death mechanism with ∼100% accuracy. This automated method will allow for quantification during the incubation steps without the need for additional steps, typically associated with conventional technique like fluorescence microscopy, western blot and ELISA. As a result, this technique will be faster and cost effective.
Funder
Air Force Office of Scientific Research
University of Toledo
Susan G Komen Breast Cancer Foundation
Department of Defense
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献