Label-free identification of cell death mechanism using scattering-based microscopy and deep learning

Author:

Khoubafarin SomaiyehORCID,Kharel Ashish,Malla Saloni,Nath Peuli,Irving Richard E,Kaur Devinder,Tiwari Amit K,Ray Aniruddha

Abstract

Abstract The detection of cell death and identification of its mechanism underpins many of the biological and medical sciences. A scattering microscopy based method is presented here for quantifying cell motility and identifying cell death in breast cancer cells using a label-free approach. We identify apoptotic and necrotic pathways by analyzing the temporal changes in morphological features of the cells. Moreover, a neural network was trained to identify the cellular morphological changes and classify cell death mechanisms automatically, with an accuracy of over 95%. A pre-trained network was tested on images of cancer cells treated with a different chemotherapeutic drug, which was not used for training, and it correctly identified cell death mechanism with ∼100% accuracy. This automated method will allow for quantification during the incubation steps without the need for additional steps, typically associated with conventional technique like fluorescence microscopy, western blot and ELISA. As a result, this technique will be faster and cost effective.

Funder

Air Force Office of Scientific Research

University of Toledo

Susan G Komen Breast Cancer Foundation

Department of Defense

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3