Abstract
Abstract
We study IrCrMnZ (Z = Al, Ga, Si, Ge) systems using first-principles calculations from the perspective of their application as electrode materials of MgO-based magnetic tunnel junctions (MTJs). These materials have highly spin-polarized conduction electrons with a partially occupied Δ1 band, which is important for coherent tunneling in a parallel magnetization configuration. The Curie temperatures of IrCrMnAl and IrCrMnGa are very high (above 1300 K), as predicted from mean-field-approximation. The stability of the ordered phase against various antisite disorders is investigated. We discuss here the effect of ‘spin-orbit-coupling’ on the electronic structure around the Fermi level. Further, we investigate the electronic structure of the IrCrMnZ/MgO heterojunction along the (001) direction. IrCrMnAl/MgO and IrCrMnGa/MgO maintain half-metallicity even at the MgO interface, with no interfacial states at/around the Fermi level in the minority-spin channel. Large majority-spin conductance of IrCrMnAl/MgO/IrCrMnAl and IrCrMnGa/MgO/IrCrMnGa is reported from the calculation of the ballistic spin-transport property for the parallel magnetization configuration. We propose IrCrMnAl/MgO/IrCrMnAl and IrCrMnGa/MgO/IrCrMnGa as promising MTJs with a weaker temperature dependence of tunneling magnetoresistance ratio, owing to their very high Curie temperatures.
Funder
Core Research for Evolutional Science and Technology
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献