Macro-dipoles in soft/hard expanded-polytetrafluoroethylene + fluoroethylenepropylene (ePTFE + FEP) fluoropolymer-film systems for high-output piezoelectric ferroelectret-transducer applications

Author:

Wang NingzhenORCID,Baferani Mohamadreza Arab,Daniels RobertORCID,Wu Chao,Huo JindongORCID,van Turnhout Jan,Sotzing Gregory A,Gerhard ReimundORCID,Cao YangORCID

Abstract

Abstract Multi-layer ferroelectrets consisting of fluoroethylenepropylene (FEP) copolymer and open-porous expanded polytetrafluoroethylene (ePTFE) films exhibit stable internal electret charges, high piezoelectric coefficients and heat resistance, making them promising candidates for wearable sensors or nanogenerators in body-area networks. Here, three- and five-layer (FEP/ePTFE/FEP and FEP/ePTFE/FEP/ePTFE/FEP) ferroelectret stacks were laminated and poled in a corona discharge. The resulting charge distributions were measured by use of the pulsed electro-acoustic (PEA) method and revealed that charges of opposite polarity were trapped at the interfaces between the FEP and ePTFE layers. Thus, the existence of one macro-dipole in the three-layer structure and of two macro-dipoles in the five-layer structure was directly shown for the first time. Moreover, electric-displacement-versus-electric-field (D-E) loops revealed that remnant polarization is given by the number of macro-dipoles in the respective stack. Due to the addition of the macro-dipoles, the piezoelectric d 33 coefficient of the FEP/ePTFE/FEP/ePTFE/FEP stack reaches 200 pC/N even under a potentially non-uniform compression of the soft ePTFE layers. The results should be useful for a better understanding and a performance optimization of ferroelectrets in self-powered intelligent devices.

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3