Catalyst-free synthesis of ammonia using dc-driven atmospheric-pressure plasma in contact with water

Author:

Ramoy MaryORCID,Shirai NaokiORCID,Sasaki KoichiORCID

Abstract

Abstract Atmospheric-pressure plasma, generated using a dc power supply, in contact with water was investigated as a green, catalyst-free method for the ammonia synthesis. Stable nitrogen plasmas were generated inside bubbles which were obtained by inserting a dielectric tube with the gas flow into water. A higher production rate was obtained at a higher discharge current, a higher flow rate of nitrogen, and a lower conductivity of water. In addition, the production rate when the water worked as the cathode of the discharge was higher than that with the inverted polarity of the dc power supply. The maximum production rate of ∼0.98 µmol min−1 was realized at the optimized discharge condition, which is higher than the literature value obtained using a dc discharge in contact with water (Hawtof et al 2019 Sci. Adv. 5 eaat5778). We also discussed the possible reaction fields for the ammonia synthesis in the experimental condition.

Funder

Japan Science and Technology Corporation

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3