Thermal oxidation of Ru(0001) to RuO2(110) studied with ambient pressure x-ray photoelectron spectroscopy

Author:

Diulus J TreyORCID,Tobler Benjamin,Osterwalder JürgORCID,Novotny ZbynekORCID

Abstract

Abstract The thermal oxidation of Ru(0001) has been extensively studied in the surface science community to determine the oxidation pathway towards ruthenium dioxide (RuO2(110)), improving the knowledge of Ru(0001) surface chemistry. Using time-lapsed ambient-pressure x-ray photoelectron spectroscopy (APXPS), we investigate the thermal oxidation of single-crystalline Ru(0001) films toward rutile RuO2(110) in situ. APXPS spectra were continuously collected while the Ru(0001) films were exposed to a fixed O2 partial pressure of 10−2 mbar and the sample temperature was increased stepwise from room temperature to 400 °C. We initially observe the removal of adventitious carbon and subsequent formation of a chemisorbed oxygen overlayer at 250 °C. Further annealing to 300 °C leads to an increase in thickness of the oxide layer and a shift in the Ru–O component of the Ru 3d spectra, indicating the presence of a metastable O–Ru–O trilayer structure. A rapid formation of the RuO2 rutile phase with an approximate thickness of at least 2.6 nm is formed about four minutes after stabilizing the temperature at 350 °C and subsequent annealing to 400 °C, signaled by a distinct binding energy shift in both the Ru 3d and O 1s spectra, as well as quantitative analysis of XPS intensities. This observed autocatalytic oxidation process agrees well with previous theoretical models and experimental studies, and the data provide the unambiguous spectral identification of one proposed metastable precursor required for full oxidation to rutile RuO2(110). Further ex situ characterization of the grown oxide with x-ray photoelectron diffraction confirms the presence of three rotated domains of rutile RuO2(110) and reveals their orientation relative to the substrate lattice.

Funder

H2020 Marie Skłodowska-Curie Actions

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3