Abstract
Abstract
The sensing performance of N-polar GaN/InAlN MOS-HEMT biosensors for neutral biomolecules was investigated and compared with the Ga-polar MOS-HEMT and N-polar T-gate HEMT by numerical simulation. The results indicate that the N-polar GaN/InAlN MOS-HEMT biosensor has higher sensing sensitivity than the Ga-polar MOS-HEMT and N-polar T-gate HEMT biosensors. Furtherly, to improve the sensing performance of N-polar MOS-HEMT, the influence of cavity dimensions, GaN channel layer thickness, and InAlN back barrier layer thickness on device performance was investigated. It is demonstrated that the sensitivity of the biosensor increases as the cavity height decreases and the cavity length increases. Therefore, the sensing performance of the N-polar MOS-HEMT device will be enhanced by thinning the GaN channel layer thickness or increasing the InAlN back barrier thickness, which can be mainly attributed to the variation of the energy band structure and two-dimensional electron gas concentration in the HEMT heterostructure. Finally, the highest sensitivity can be obtained for the N-polar MOS-HEMT with 6 nm-thick GaN channel layer, 30 nm-thick InAlN back barrier layer, and two 0.9 μm-long and 5 nm-high cavities. This work provides structural optimal design guidance for the N-polar HEMT biosensor.
Funder
Yantai Key R&D Program
Natural Science Foundation of Shandong Province
Yantai New and Old Kinetic Energy Conversion Project
Fundamental Research Projects of Science & Technology Innovation and Development Plan in Yantai City
Natural Science Foundation of China
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献