The study of N-polar GaN/InAlN MOS-HEMT and T-gate HEMT biosensors

Author:

Liu YueORCID,Ma Yuzhen,Guo Haiqiu,Fu Su,Liu Yuhui,Wei Guangfen,Liu Yanli,Hao Yaming,Chen DunjunORCID

Abstract

Abstract The sensing performance of N-polar GaN/InAlN MOS-HEMT biosensors for neutral biomolecules was investigated and compared with the Ga-polar MOS-HEMT and N-polar T-gate HEMT by numerical simulation. The results indicate that the N-polar GaN/InAlN MOS-HEMT biosensor has higher sensing sensitivity than the Ga-polar MOS-HEMT and N-polar T-gate HEMT biosensors. Furtherly, to improve the sensing performance of N-polar MOS-HEMT, the influence of cavity dimensions, GaN channel layer thickness, and InAlN back barrier layer thickness on device performance was investigated. It is demonstrated that the sensitivity of the biosensor increases as the cavity height decreases and the cavity length increases. Therefore, the sensing performance of the N-polar MOS-HEMT device will be enhanced by thinning the GaN channel layer thickness or increasing the InAlN back barrier thickness, which can be mainly attributed to the variation of the energy band structure and two-dimensional electron gas concentration in the HEMT heterostructure. Finally, the highest sensitivity can be obtained for the N-polar MOS-HEMT with 6 nm-thick GaN channel layer, 30 nm-thick InAlN back barrier layer, and two 0.9 μm-long and 5 nm-high cavities. This work provides structural optimal design guidance for the N-polar HEMT biosensor.

Funder

Yantai Key R&D Program

Natural Science Foundation of Shandong Province

Yantai New and Old Kinetic Energy Conversion Project

Fundamental Research Projects of Science & Technology Innovation and Development Plan in Yantai City

Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3