Modeling of reactive species interphase transport in plasma jet impinging on water

Author:

Kamidollayev TlegenORCID,Trelles Juan PabloORCID

Abstract

Abstract The interaction between low-temperature atmospheric pressure plasma and water is of primary relevance to an increasing number of applications, from water treatment to medicine. The interaction between an argon plasma jet and water is investigated using a three-dimensional (3D) time-dependent computational model encompassing turbulent gas flow and induced liquid motion, gas–water interface dynamics, multiphase species transport, and gas- and liquid-phase chemical reactions. A single-field approach based on the volume-of-fluid (VoF) method together with conditional volume averaging (CVA), is used to consistently describe the dynamics of the interface together with interfacial reactive mass transfer. Three CVA-based interface species transport models, based on arithmetic, harmonic, and unified mixture species diffusivities, are evaluated. Simulations of a plasma jet impinging on water at different gas flow rates are presented. The resulting deformation of the interface and the production and accumulation of hydrogen peroxide, reactive oxygen, and nitrogen species corroborate prior findings in the research literature showing that higher jet velocities and associated increased interface deformation led to the enhanced transport of reactive species across the plasma-water interface. The VoF-CVA approach appears promising for the modeling of general plasma-liquid multiphase systems.

Funder

the US Department of Energy, Office of Science, Office of Fusion Energy Sciences

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3