Numerical simulation of contact and separation of magnetic particles under uniform magnetic field

Author:

Xu ZhiqiangORCID,Bo Xinqian,Wu Heng,Tang Zhifa,Chen Feng,Chen Kewen,Wang Xiaodong,Zhang Gaofeng,Jiang Shengqiang

Abstract

Abstract Under the action of an external magnetic field, the magnetic particles will be arranged along the direction of the magnetic field. The laws of physics that control these processes are well described in the literature. However, when the magnetic particles move in the fluid, the magnetic particles with different initial distances have different mutual influences, so there will be different laws of motion. Therefore, based on the motion theory of magnetic particles in Stokes fluid, this article discusses the motion law of the contact and separation of two circular magnetic particles in Newtonian fluid. First, we conduct theoretical and simulation modeling of two magnetic particles under the action of a uniform magnetic field, and verify the correctness of the simulation through experiments; secondly, we use numerical simulation to study the angle of repulsion and attraction of magnetic particles at different initial distances, and analyze at the same time the changes in the trajectory, speed, torque and force of magnetic particles in the process of motion are studied. Finally, the influence of external field conditions on the phenomenon of contact and separation of magnetic particles is studied. The study found that even when the initial angle between the magnetic particles is 90° with the direction of the magnetic field, the magnetic particles with different initial distances will repel under the action of repulsive force and then contact again and keep repelling these two states, a better explanation the reason for the agglomeration of magnetic particles at close range is explained.

Funder

Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3