Robust electrical contacts integrating a liquid metal bridge for mechanical switches

Author:

Zhu XiaonanORCID,Yang FeiORCID,Wang Haoran,Zhao Siyuan,Wu Yifei,Wu Yi,Rong Mingzhe

Abstract

Abstract Intrinsic roughness of solid surfaces causes a series of inevitable shortcomings in the use of mechanical electrical contacts, among which one of the most fatal is the repulsive electrodynamic force arising from high currents. A large contact force coming from a heavy holding mechanism helps to suppress the repulsive effect whereas the mechanism consumes energy and remains to be challenging for a compact switching device. Here, a liquid metal (LM) bridge is introduced to wet solid electrodes to eliminate contact issues. Four instability patterns induced by the electromagnetic pinch effect are identified to characterize LM bridge’s response to high currents. Simulation results reveal that an inner vortex caused by uneven distributions of current density and electrodynamic volume force leads to the rupture of a necked LM bridge. With a uniform structure, a cylindrical LM bridge is proved to be robust with respect to an impulse current higher than 10 kA, exceeding a commercial compact relay by a factor of more than 10 in terms of current withstand performance. Our research facilitates compact and energy-saving switch equipment and has a potential to realize arbitrary desired levels of high current withstand without the use of a holding mechanism. This paper also offers deep insights into the high current applications of LM from the perspective of fluid related physical mechanisms.

Funder

Research Program of Shaanxi Province

National Natural Science Foundation

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Power-Level Electrical Switch Enabled by a Liquid-Metal Bridge;ACS Applied Electronic Materials;2022-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3