Investigations on enhanced plasma expansion in pseudospark discharge assisted by a magnetic switch

Author:

Yan JiaqiORCID,Shen SaikangORCID,Sun Guoxiang,Ding Weidong,Wang WeizongORCID,Wang Zhehong,Wang Haibo

Abstract

Abstract Electrode erosion caused by dense plasma in constrictive discharge channel is one of the fundamentally detrimental effects existing in pulsed discharge switches. An enhanced plasma expansion in pseudospark discharge assisted by a magnetic switch (MS) is observed from ICCD images in this paper, accompanied by reduced commutation loss, and the mechanisms are revealed by experiments and simulations. The characteristics of the discharge waveforms and channel images of the pseudospark discharge with and without a series-connected MS are compared, and the influence of the number of magnetic cores is studied. As the loop current increases, the discharge channel expands radically and reaches the maximum as the current rising rate reaches the maximum. As the number of magnetic cores increases from 0 to 8, the maximum diameter of the discharge channel increases from 16 mm to about 38 mm, and the commutation loss is reduced from 30 mJ to 11 mJ. The electrode erosion rate of the case with a MS is lower than that without a MS. A particle in cell/Monte Carlo collision model coupling to nonlinear external circuit elements is established. The simulation results fit well with the experiment phenomena, including the discharge waveforms and the profiles of the discharge channel. The distribution of ions shows more diffused features than that of electrons, while the distribution of electrons is more similar to the discharge channel observed in experiments. The enhanced plasma expansion is mainly caused by the higher radial acceleration component of the charged particles during the magnetically delayed time.

Funder

State Key Laboratory of Intense Pulsed Radiation Simulation and Effect

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3