Template-free self-assembly of mesoporous ZnO nanocluster/ polymethyl methacrylate based anisotropic nanocomposite thin films with enhanced interfacial interactions and tuneable optical properties

Author:

Awasthi ShivamORCID,Mohan AnitaORCID,Singh Kamalesh K

Abstract

Abstract Nature inspired biomimetic growth of anisotropic, hierarchical nanostructures could offer insight into new and exciting crystalline properties for advanced multifunctional applications. Our study demonstrates diethanolamine-mediated mesoscopic self-assembly of semiconducting ZnO Quantum Dots (3–5 nm) into lattice-aligned, symmetrical superstructures (40–50 nm) via non-classical oriented attachment (OA) crystal growth observed in various biomineralization processes. Multifunctional nanocomposite thin films of self-assembled nanostructures and polymethyl methacrylate were spin-coated onto plasma-treated Si wafers and the surface and interfacial properties were rigorously studied. HR-TEM images depicted the OA growth process with neighboring nano-crystals having perfectly aligned lattices. Preferential orientation of the thin films along <100> direction was evident from the XRD data. Quantum confinement in ZnO QDs and surface defect originating sharp green PL emission were examined through UV–Vis absorption and Photoluminescence spectra respectively. DLS and Zeta potential studies of surface-engineered colloidal superstructures established excellent long-term physico–chemical stability with no agglomeration or transparency loss observed in ZnO mesocrystal suspension even after 6 months. Diethanolamine, due to its dual functionality radically enhanced the interaction between polar ZnO and non-polar PMMA matrix resulting in highly stable thin films (Class II hybrids) with enhanced surface and interfacial properties as evident from the extremely low surface roughness and homogenous nanofiller dispersion observed in AFM and FE-SEM studies. Chemical interactions at the interface were also established quantitatively by XPS binding energy measurements which suggested hydrogen bonds and covalent bonds between organic-inorganic phases promoted via diethanolamine surface engineering.

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3