Design of real time magnetic field compensation system based on fuzzy PI control algorithm for comagnetometer

Author:

Tang ChenchengORCID,Liu ChangORCID,Prado Caio A GORCID,Zhao TianORCID,Han Bangcheng,Zhai Yueyang

Abstract

Abstract Alkali-metal-noble-gas comagnetometers operating in the spin exchange relaxation free regime have been widely used in frontier science research and navigation technology. Under normal circumstances, the comagnetometer operates at the compensation point so that any interfering external magnetic field is tracked and suppressed by the nuclear spin. This in turn can greatly diminish the comagnetometer’s sensitivity to the magnetic field; however, its sensitivity to rotations and to anomalous fields is still maintained. The compensation point is typically adjusted manually, which leads to low accuracy and compensation speed, in addition to only allowing short-term magnetic field stability. In order to account for these problems, we designed a three-axis magnetic field compensation system in real time based on LabVIEW, and employed it to a K−Rb 21 Ne comagnetometer. Our study shows that by using a fuzzy proportional-integral (PI) controller, the compensation point can be tracked in real time and with higher precision when compared with manually adjusted methods, therefore improving the magnetic field stability and sensitivity of the comagnetometer.

Funder

China Postdoctoral Science Foundation

Major Scientific Project of Zhejiang Laboratory

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3