Abstract
Abstract
The exquisite distortion in a Kekulé -Y (Kek-Y) superlattice merges the two inequivalent Dirac cones (from the K- and the K′- points) into the highest symmetric Γ-point in the hexagonal Brillouin zone. Here, we report that UV circularly polarized light not only opens up a topological gap at the Γ-point, but also lifts the valley degeneracy at that point. Endowed with Floquet dynamics and by devising a scheme of high-frequency approximation, we propose that the left/right-handedness in polarized light offers the possibility to realize valley-selective circular dichroism in a Kek-Y-shaped graphene superlattice. In addition, the non-vanishing Berry curvature and enumeration of the valley-resolved Chern number
C
K
/
C
K
′
=
+
1
/
−
1
enable us to assign two pseudospin flavors (up/down) with the two valleys. Thereby, the above observations confirm the topological transition, suggesting the ease of realizing the valley quantum anomalous Hall state within the photon-dressed Kek-Y. These findings further manifest a non-zero optical valley polarization that is maximal at the Γ-point. Our paper thus proposes an optically switchable topological valley filter, which is desired in the evolving landscape of valleytronics.