Electron and magnon resonant tunneling: materials, physics and devices

Author:

Han XiufengORCID,Tao LinglingORCID,Wu HaoORCID,Tang PingORCID,Xing YaowenORCID

Abstract

Abstract Resonant tunneling (RT) originally refers to electron tunneling through the resonant states of double-barrier potentials with a series of sharply peaked transmission coefficients (close to unity) at certain energies. Electron RT can be used to design promising electronic devices such as RT diode. If the quantum well states are spin-dependent, the electron RT would exhibit spin-polarized or spin-selective properties, as observed in the double magnetic tunnel junctions with a thin intercalary ferromagnetic layer. As a result of the quantum wave–particle duality, RT can be further expanded to magnons—the quanta of spin waves, which opens up a new avenue of research—magnon RT. Because of the bosonic nature and macroscopic quantum coherence, the magnon RT may occur in a wide spectrum and temperature range (room temperature and above room temperature), while the electron RT typically occurs around the Fermi level and at low temperature or around room temperature. Here, we review the recent advances in RT physics of electron and magnon, and outline possible device implications.

Funder

National Natural Science Foundation of China

Research and Development Program of China

Fundamental Research Funds for the Central Universities

Beijing Natural Science Foundation

Strategic Priority Research Program

Guangdong Basic and Applied Basic Research Foundation

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3