Dynamic mode decomposition for data-driven analysis and reduced-order modeling of E × B plasmas: I. Extraction of spatiotemporally coherent patterns

Author:

Faraji FORCID,Reza MORCID,Knoll AORCID,Kutz J NORCID

Abstract

Abstract The advent of data-driven/machine-learning based methods and the increase in data available from high-fidelity simulations and experiments has opened new pathways toward realizing reduced-order models for plasma systems that can aid in explaining the complex, multi-dimensional phenomena and enable forecasting and prediction of the systems’ behavior. In this two-part article, we evaluate the utility and the generalizability of the dynamic mode decomposition (DMD) algorithm for data-driven analysis and reduced-order modeling of plasma dynamics in cross-field E × B configurations. The DMD algorithm is an interpretable data-driven method that finds a best-fit linear model describing the time evolution of spatiotemporally coherent structures (patterns) in data. We have applied the DMD to extensive high-fidelity datasets generated using a particle-in-cell (PIC) code based on the cost-efficient reduced-order PIC scheme. In this part, we first provide an overview of the concept of DMD and its underpinning proper orthogonal and singular value decomposition methods. Two of the main DMD variants are next introduced. We then present and discuss the results of the DMD application in terms of the identification and extraction of the dominant spatiotemporal modes from high-fidelity data over a range of simulation conditions. We demonstrate that the DMD variant based on variable projection optimization (OPT-DMD) outperforms the basic DMD method in identification of the modes underlying the data, leading to notably more reliable reconstruction of the ground-truth. Furthermore, we show in multiple test cases that the discrete frequency spectrum of OPT-DMD-extracted modes is consistent with the temporal spectrum from the fast Fourier transform of the data. This observation implies that the OPT-DMD augments the conventional spectral analyses by being able to uniquely reveal the spatial structure of the dominant modes in the frequency spectra, thus, yielding more accessible, comprehensive information on the spatiotemporal characteristics of the plasma phenomena.

Funder

H2020 LEIT Space

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3