Atmospheric pressure uniform dielectric barrier discharge (DBD) in a wide air gap initiated from a narrow starting point

Author:

Liu J,Yang Y,Nie L,Liu DORCID,Lu XORCID

Abstract

Abstract Generating a uniform non-equilibrium plasma in atmospheric pressure air has always been a challenge. It is believed that the maximum spacing for generating a uniform non-equilibrium plasma in atmospheric pressure air, whether using AC or nanosecond pulse drive, is 4 mm. Discharges are always non-uniform when the spacing is greater than 4 mm. In this paper, we propose a new type of dielectric barrier discharge structure to address this challenge. The left end of the structure rapidly increases the discharge spacing from 0.5 mm to 6 mm, while the right side of the main discharge gap maintains a uniform spacing of 6 mm. Nanosecond pulse voltage is used to drive the plasma, an ICCD camera is used to capture the image of the plasma during a discharge pulse cycle, which indicates that a uniform plasma within the 6 mm spacing of the main discharge gap is generated. Upon further reducing the ICCD camera’s exposure time to 20 ns, it is revealed that the uniform plasma is formed due to the rapid propagation of the plasma from left to right at a speed of order of 105 m s−1. Due to the small transverse component of the external electric field, this rapid propagation behavior cannot be due to the external electric field. Therefore, this paper further proposes the hypothesis of electric dipole formation leading to this fast propagation. The hypothesis suggests that the charge separation on the surface of the anode forms an electric dipole, which generates a local discharge at its right end. This local discharge further triggers the discharge in the main gap, and the main gap discharge, in turn, forms a dipole due to charge separation again, by repeating this cycle, the plasma propagates rapidly to the right. Further analysis demonstrates that this dipole can indeed produce a strong electric field of up to 41 kV cm−1 at its right end, which is sufficient to induce a local discharge. Moreover, under such a strong electric field, the electron migration rate can indeed reach 105 m s−1. These findings support the plausibility of this hypothesis.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3