Cd-doping effects in Ni–Mn–Sn: experiment and ab-initio study

Author:

Ghazinezhad ZORCID,Kameli PORCID,Ghotbi Varzaneh AORCID,Sarsari I AbdolhosseiniORCID,Norouzi-Inallu MORCID,Amiri TORCID,Salazar DORCID,Rodríguez-Crespo B,Vashaee DORCID,Etsell T H,Chernenko VORCID

Abstract

Abstract Martensitic transformation (MT), magnetic properties, and magnetocaloric effect (MCE) in Heusler-type Ni47Mn40Sn13−x Cd x (x= 0, 0.75, 1, 1.25 at. %) metamagnetic shape memory alloys (MetaMSMAs) are investigated, both experimentally and theoretically, as a function of doping with Cd. Ab-initio computations reveal that the ferromagnetic (FM) configuration is energetically more favorable in the cubic phase than the antiferromagnetic (AFM) state in undoped and doped alloys as well. Moreover, it is revealed that the alloys in the ground state exhibit a tetragonal structure confirming the existence of MT, in agreement with the experiments. It was indicated, both in theory and practice, that a reduction of the unit cell volume and an increase of the MT temperature as a function of the Cd doping. Indirect estimations of MCE in the vicinity of MT were carried out by using thermomagnetization curves measured under different magnetic fields up to 5 T. The results demonstrated that the doped alloys exhibit enhanced values of the inverse MCE comparable with those of Ni-Mn-based MetaMSMAs. Maximum magnetic entropy change in a field change of 2 T increases from 3.0 J .k g 1 K 1 for the undoped alloy to 3.4 and 5.0 J .k g 1 K 1 for the alloys doped with 0.75 and 1 at.% of Cd, respectively. The inverse and conventional MCE were explored by direct measurements of the adiabatic temperature change under the magnetic field change of 1.96 T. The Cd doping increased the maximum of inverse MCE by nearly 78% from 0.9 K to 1.6 K for the undoped and doped alloys, respectively. The results depicted that Cd doping can effectively tailor the structural, magnetic, and MCE properties of the Ni–Mn–Sn MetaMSMAs.

Funder

Iran National Science Foundation

Isfahan University of Technology

NSF

Basque Government Department of Education

Spanish Ministry of Science, Innovation

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3