Light-trapping structure based on ultra-thin GaAs solar cell

Author:

Peng Y SORCID,Gong S F

Abstract

Abstract It is well-known that the light-trapping effect is very important for improving cell efficiency and reducing material cost. Certain kinds of light-trapping schemes have been explored and applied to thin-film cells, especially to Si-based thin-film solar cells. This is considered less attractive in GaAs thin film cells, due to the fact that GaAs has a high absorption coefficient, a direct bandgap and suffers from strong surface recombination. In this paper, we describe the development of a highly efficient light-trapping structure utilizing periodically patterned front and back dielectric nanopyramid arrays keeping a completely flat GaAs active layer. It was found that our proposed structure was superior for ultra-thin active layers. The optimized structure yielded a photocurrent density of 20.94 mA cm−2 with an active layer thickness of 0.1 μm, which by far exceeded the reference cell photocurrent of 15.31 mA cm−2 with an equivalent thickness. These results are very significant for directing research into the light trapping and cost reduction of thin-film GaAs solar cells.

Funder

Zhejiang Provincial Department of education

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3