Photo- and exchange-field controlled line-type resonant peaks and enhanced spin and valley polarizations in a magnetic WSe2 junction

Author:

Alipourzadeh MohammadORCID,Hajati YaserORCID,Makhfudz ImamORCID

Abstract

Abstract Existing resonant tunneling modes in the shape of line-type resonances can improve the transport properties of the junction. Motivated by the unique structural properties of monolayer WSe2 e.g. significant spin–orbitcoupling and large direct band gap, the transport properties of a normal/ferromagnetic/normal WSe2 junction with large incident angles in the presence of exchange field (h), off-resonance light ( Δ Ω ) and gate voltage (U) is studied. In a certain interval of U, the transmission shows a gap with optically controllable width, while outside it, the spin and valley resolved transmissions have an oscillatory behavior with respect to U. By applying Δ Ω (h), an optically (electrically) switchable perfect spin and valley polarizations at all angles of incidence have been found. For large incident angles, the transmission resonances change to spin-valley-dependent separated ideal line-type resonant peaks with respect to U, results in switchable perfect spin and valley polarizations, simultaneously. Furthermore, even in the absence of U, applying h or Δ Ω at large incident angles can give some spin-valley dependent ideal transmission peaks, making h or Δ Ω a transmission valve capable of giving a switchable fully spin-valley filtering effect. These findings suggest some alternate methods for providing high efficiency spin and valley filtering devices based on WSe2.

Funder

Shahid Chamran University of Ahvaz

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3