Dynamic control of Fano-like interference in the graphene periodic structure

Author:

Li BoxunORCID,Liu Mingliang,Wen Ruquan,Wei Yi,Zeng Lili,Deng ChaoshengORCID

Abstract

Abstract We propose and investigate a graphene periodic subsurface structure consisting of a coplanar pair of graphene ring resonators and a graphene ribbon. The Fano-like interference can be actively regulated by the applied magnetic field, incident angle and Fermi energy. Since the excited charges of graphene monolayer have cyclotron properties in the external magnetic field, the transmittance and line-shape can be effectively controlled. At a certain frequency, different magnetic fields have different effects on the conductivity tensor of graphene, which affects the metallic properties of graphene, leading to changes in the transmittance. The Fano-like line-shape can be regulated by adjusting the incident angle to delay the phase between adjacent graphene sheets. In addition, the resonance frequency can be electrically regulated through Fermi energy. Finite element method is introduced to analyze the graphene periodic structure and the results are demonstrated by multimode interference coupled mode theory. The Faraday rotation angle exceeding 85° are observed in a small magnetic flux density B of about 0.5 T. Moreover, a plasma-optic switching with high ON/OFF ratio and large modulation depth (MD) is designed, whose ON/OFF ratio (η) and MD are 19.921 dB and 98.982%, respectively. Notably, combining the influence of magnetic flux density on transmittance and the modulation of resonance frequency by Fermi energy, optical switching can be implemented at any frequency within the frequency range studied. These results provide methods for active regulation of electromagnetic waves in the terahertz field and have potential applications in optical switching and integrated photonic circuit.

Funder

Science and Technology Project of Hunan Provincial Education Department

Scientific Research Initiation Project of Xiangtan University

Natural Science Foundation of Jiangxi Province

Natural Science Foundation of Hunan Province

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3