Label-free characterization of ischemic cerebral injury using intravital two-photon excitation fluorescence lifetime imaging microscopy

Author:

Li HuiORCID,Yin Yixuan,Xiang Feng,Yu Jia,Wu Ting,Liu Lina,Liao Jiuling,Zheng WeiORCID

Abstract

Abstract Characterizing an ischemic brain injury at its early stage is critical to biological research and the clinical diagnosis of cerebral ischemia-related diseases. However, approaches with intravital, label-free, and real-time characterization capabilities are scarce. Two-photon excitation fluorescence lifetime imaging microscopy (FLIM) can detect variations in energy metabolism based on the autofluorescence of reduced nicotinamide adenine dinucleotide (NADH). Using this unique feature, we proposed a novel approach for cerebral ischemia characterization. From investigating cell and animal models, the cerebral NADH fluorescence lifetime was observed to be sensitive to metabolic changes caused by ischemia and consistent with ischemic time. A comparison with standard blood flow imaging and neuronal injury assessment further suggests that, the two-photon FLIM, using NADH as an indicator, can characterize degrees of cerebral ischemia and related injuries, particularly at the early stage. These findings demonstrate that NADH FLIM is promising for providing intravital, label-free, and real-time assessment of cerebral ischemia and ischemic brain injury that will be significant to the study and diagnosis of related diseases.

Funder

Shenzhen Basic Research Program

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Scientific Instrument Innovation Team of Chinese Academy of Sciences

National Key Research and Development Program of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3