Kinematic design of linkage-based haptic interfaces for medical applications: a review

Author:

Torabi AliORCID,Nazari Ali AORCID,Conrad-Baldwin Everly,Zareinia KouroshORCID,Tavakoli MahdiORCID

Abstract

Abstract A haptic interface recreates haptic feedback from virtual environments or haptic teleoperation systems that engages the user’s sense of touch. High-fidelity haptic feedback is critical to the safety and success of any interaction with human beings. Such interactions can be seen in haptic systems utilized in medical fields, such as for surgical training, robotic tele-surgery, and tele-rehabilitation, which require appropriate haptic interface design and control. In order to recreate high-fidelity soft and stiff contact experiences for the user in the intended application, different designs strike different trade-offs between the desirable characteristics of an interface, such as back-drivability, low apparent inertia and low friction for the best perception of small reflected forces, large intrinsic stiffness and force feedback capability for the best perception of large reflected forces, a large-enough workspace for exploring the remote or virtual environment, and the uniformity of haptic feedback and its adequate sensitivity over the workspace. Meeting all of the requirements simultaneously is impossible, and different application-driven compromises need to be made. This paper reviews how various kinematic designs have helped address these trade-offs in desired specifications. First, we investigate the required characteristics of linkage-based haptic interfaces and inevitable trade-offs between them. Then, we study the state of the art in the kinematic design of haptic interfaces and their advantages and limitations. In all sections, we consider the applications of the intended haptic interfaces in medical scenarios. Non-linkage-based haptic interfaces are also shortly discussed to show the broad range of haptic technologies in the area. The potentials of kinematic redundancy to address the design trade-offs are introduced. Current challenges and future directions of haptic interface designs for medical applications are shortly discussed, which is finally followed by the conclusion.

Funder

Canada Foundation for Innovation

Ministry of Advanced Education, Government of Alberta

Canadian Institutes of Health Research

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Development of a Novel Haptic Device for Plucked Musical Instrument AR Simulation;2023 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE);2023-09-24

2. A novel design of force-feedback master manipulator for remote ultrasound scanning;2022 IEEE International Conference on Robotics and Biomimetics (ROBIO);2022-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3