Actuation of ionic polymer-metal composites with alkali metal counterions—a molecular dynamics study

Author:

Truszkowska A,Porfiri MORCID

Abstract

Abstract Ionic polymer-metal composites (IPMCs) are soft, electroactive materials with unique actuation properties that have attracted the interest of physicists, chemists, and engineers for over two decades. Despite significant progress in our understanding of the phenomenology of their actuation, we are yet to fully elucidate the physics at the nanoscale that underlies their macroscopic actuation. Previous experiments have shown that IPMC actuation depends on the type of counterions that is used to neutralize the acidic polymeric backbone. Some continuum theories have attempted to explain such a modulatory effect, but a complete understanding of the physics at the nanoscale level is lacking. Here, we employ classical molecular dynamics to fill this gap in knowledge. Building upon recent developments in the field, we investigate the response of three IPMC membranes with different metallic counterions that have been considered in earlier experimental research. While we do not detect variations in the axial stress, the examination of the spatial distribution of the through-the-thickness stress components in the three membranes reveals important differences. We show that these differences are well explained in terms of variations in water content as it relates to the type of counterions, challenging existing continuum models of IPMCs that mostly overlooked these factors. Overall, our work brings to light new physics within active materials, inspiring new efforts in material design and engineering, as well as multiscale modeling of soft matter.

Funder

National Science Foundation, Office of International Science and Engineering

Publisher

IOP Publishing

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plating of Ion‐Exchange Membranes: A Molecular Dynamics Study;Advanced Theory and Simulations;2022-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3