Enhancing oil pressure dynamics in a high-performance racing engine with innovative lubrication system tuning

Author:

Pai AnandORCID,Singh Virk Sharanpreet,Pai K DayanandaORCID,Shenoy B SatishORCID,Nayak Suhas YeshwantORCID

Abstract

Abstract This work focuses on fine-tuning the oil pressure dynamics of a single-seater formula car, a participant in international engineering competition organized by the Society of Automotive Engineers (SAE). Adhering to competition guidelines, the Honda CBR600RR 05-06® motorcycle engine, renowned for its 600 c.c. displacement and exceptional power-to-weight ratio, emerges as a popular choice. However, as this engine is originally equipped with a wet sump lubrication system (featuring deep wet sumps to prevent oil starvation during turns), this presents challenges when adapted to Formula Society of Automotive Engineers (FSAE) cars. Cornering leads to significant pressure drops, as sloshing exposes the pickup port, causing consequential engine issues. To tackle sloshing-related challenges and pressure loss during lateral and longitudinal g-forces, a dry sump lubrication system was introduced in the Formula car. The dry sump system also lowers the engine’s center of gravity, by reducing sump height. However, transitioning to the dry sump system and integrating it with the existing engine demanded extensive design modifications to various components, including the oil reservoir, lubrication lines, scavenging pump, and oil ports. These adjustments were essential to achieve the targeted elevation in oil pressures at higher engine RPMs. A relationship between the engine oil pressure and the engine RPM was developed as part of the study.

Publisher

IOP Publishing

Reference24 articles.

1. Design and analysis of engine lubrication systems;Mian;Technical Report, SAE Technical Paper,1997

2. Design and development of a dry sump lubrication system for a formula sae race car;Khanna;Technical report, SAE Technical Paper,2019

3. Experimental development of apparatus to measure piston assembly friction in an eco-mileage vehicle engine;Nakashima;Combustion Engines,2019

4. Network analysis of an engine lubrication system;Chun;Tribol. Int.,2003

5. Effect of degradation on tribological performance of engine lubricants at elevated temperatures;Heredia-Cancino;Tribol. Int.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3