Abstract
Abstract
This paper has investigated the discharge process of a four-phase air-core pulsed alternator. A mathematical model of the short-circuit current, relating to firing angles of discharge thyristors and taking the current coupling and field current attenuation into account, is established. Compared with the conventional trial-and-error method and existing phase peak current model, the proposed model has considered the attenuation trend of the field current in the discharge process and derived the intuitive expression of the resultant short-circuit current. Firstly, the state equation model of a four-phase air-core pulsed alternator is established. Meanwhile, the simulation comparison indicates that the results of the state equation model are close to the finite-element model. Then, the segmented formula of resultant short-circuit current is derived based on the voltage equations of the armature winding circuits and the approximate attenuation coefficient of the field current. Finally, the segmented formula is verified with the finite-element method, and some preliminary experiments for field windings are carried out. The results show that this method can well describe the decay trend of field current and discharge current. It is helpful for selecting firing angles to generate the desired current amplitude and waveform in the future.