The effect of moisture and reinforcement on the self-sensing properties of hybrid-fiber-reinforced concrete

Author:

Maier MORCID

Abstract

Abstract This study presents the piezoresistive properties of a hybrid fiber-reinforced concrete (HyFRC) for structural health monitoring. This HyFRC mixture incorporates micro PVA and macro steel fibers to control the crack propagation. Investigations on self-sensing concrete (SSC) focus mainly on mixtures containing highly conductive fillers such as carbon nanotubes, graphite or nickel powder which results in a highly engineered cost-intensive mix composition for structural applications. This paper investigates the sensing ability of a cost-effective structural concrete mixture by considering the environmental conditions of engineering structures e.g. the moisture content as well as the influence of reinforcement on the electrical resistance measurement. The sensing parameters were evaluated by performing simultaneously bending tests and Electrochemical Impedance Spectroscopy (EIS) on beams with and without steel reinforcement. Furthermore, the influence of the pore solution on the EIS was investigated on specimens with varying moisture contents. The sensing behavior was compared to a control mixture without steel and PVA fibers. Results showed a significant lower initial resistivity for the HyFRC mixture compared to the ordinary concrete as well as the activation of the self-sensing properties due to the incorporated steel fibers. Finally, the influence of the pore solution on the EIS measurement is addressed and emphasizes the imperative need to consider the moisture content of self-sensing materials.

Funder

Marshallplan-Jubiläumsstiftung

Publisher

IOP Publishing

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3